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 Cell addition and loss are important biological events in
development and pathology. As a result, counts of cells and
nuclei from histological sections provide quantitative infor-
mation central to studying changes in cells, tissues, and or-
gans. For example, neuron number is a fundamental determi-
nant of brain function [1] and the number of photoreceptors is
a common measurement of visual function of retina [2-6].
While progress in understanding changes in such parameters
as cell structure or protein expression has been rapid during
the past few decades, methods for determining cell number
have remained limited. Determining the numerical density of
cells in sectioned materials is difficult. Indeed, even the most
rigorous studies rarely claim precision greater than ±10% [1].
Consequently, only marked changes or effects can be analyzed
with confidence. Several solutions to this problem have been
proposed, but they require significant resources in order to
complete a morphometric analysis. Moreover, most of these
methods still require manual counting, which is tedious and
time consuming, regardless of whether a 2-D or a 3-D meth-
odology is employed. In carrying out such work, biologists
need to sit for long periods of time performing microscopic
sampling and their physical and mental fatigue can impact the

speed and quality of information. Problems that demand greater
accuracy and reliability cannot be resolved with current manual
methods.

Image analysis methods have been developed for nucleus
detection or segmentation. In the past, algorithms developed
for automatic micrograph analysis have been very task spe-
cific and are not easily extensible to analysis of different types
of images such as those generated by immunofluorescence.
For example, Malpica [7] used a watershed transformation to
segment clustered nuclei. The intuitive description of a water-
shed transform is quite simple: if we consider the image as a
topographic relief, where the height of each point is directly
related to its gray level, and consider rain gradually falling on
the terrain, then the watersheds are the lines that separate the
lakes (actually called catchment basins) that form. Generally,
the watershed transform is computed on the gradient of the
original image, so that the catchment basin boundaries are lo-
cated at high gradient points. The watershed transform has
been widely used in many fields of image processing, includ-
ing medical image segmentation. Nedzved [8] used morpho-
logical operators to segment cells in images with sparse den-
sity, Demandolx [9] used a gray level thresholding method to
segment subcellular structures in Hela cells and Sjostrom [10]
used artificial neural network (ANN) to automatically count
cells. Cullen [11] used the blob detector, Proxan, to quantify
spatial relationships between heme-rich deposits and capillar-
ies. This tool is designed for separating objects based on color
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difference between them. It requires an image stained with
two different antibodies as an input. For a single labeled im-
age (e.g., a confocal image of retina stained with TO-PRO 3-
iodide, a nuclear stain), this method requires that objects in an
image are artificially marked with distinct colors. Addition-
ally, there are some commercial software products (Metamorph
and Bioquant) that provide object-counting and feature detec-
tion. However, these tools often fail to provide reliable results
and require intensive user interaction in order to obtain user-
given initialization or parameter settings for accurate results.
Furthermore, these tools are not designed to analyze immun-
ofluorescent images, which present unique challenges, espe-
cially in tissues like the retina where cells are densely packed
(600 cells in 512 x 100 pixels). Uneven staining can cause
intensity variations within cell layers, and non-uniform DNA
distribution inside the nucleus can cause intensity variations
within individual cells. There is a need for robust methods for
automatically counting nuclei with consistently high accuracy
and reliability in large sets of digital micrographs.

In this paper, we present methodology for automatically
detecting nuclei, and therefore cell bodies, from a 2-D digital
micrograph. The proposed approach provides an accurate,
simple, and reliable method to count cells, nuclei, or other
objects in sectioned materials. In order to have a scientific
basis for selecting optimal parameters of the method, we
mainly focus on retinal images, in particular the outer nuclear
layer (ONL). Specifically, we detect fluorescent labeled pho-
toreceptor nuclei from confocal images of control and degen-
erating feline retina as a result of retinal detachment. To show
that the proposed method can be applied to many types of
images without significant effort, we also tested it with im-
ages acquired by transmitted light and epi-fluorescent micros-
copy, and from tissue in which the contrast of nuclei was low.

The proposed nucleus detector has a number of advantages
over manual analysis and other currently available or proposed
automatic/semi-automatic methods including objectivity, sim-
plicity, and applicability.

METHODS
Materials:  The basis of our study is a set of immunofluores-
cent retinal images which have been collected by confocal
imaging for understanding the mechanisms underlying the loss
and recovery of vision following retinal detachment and reat-
tachment. We collect stacks of serial optical sections (often
termed a z-series) from a 100 µm thick retinal tissue section
and use only a single optical focal plane image from each z-
series to count nuclei within the specific focal plane. We can
avoid counting the superimposed nuclei in multiple depth
planes by using a single focal plane image instead of a mul-
tiple focal plane superimposed image (composite or projec-
tion view).

Photoreceptor cells have received the greatest attention
in these studies since photoreceptor outer segment degenera-
tion and cell death are considered a major effect of detach-
ment. Previously it has been shown that the number of photo-
receptors decrease after detachment [4,12] (Figure 1). Such
degeneration of photoreceptors has been measured in various
ways in different studies [3,4,13]: (1) the number of rows of
nuclei in the ONL, (2) the area of the ONL, (3) the thickness
of the ONL, and (4) the number of nuclei in the ONL. The
values of these measurements are usually represented as change
over time which is then used as an index of photoreceptor
degeneration. It has been verified that the ONL appears to be
much more loosely packed with nuclei compared to normal as
a result of loss of cells following detachment [4,6]. ONL thick-
ness or area, however, may not always give an accurate mea-
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Figure 1. Photoreceptor death dur-
ing retinal detachment.  Confocal
images of normal and detached reti-
nas stained with the nucleus dye,
TO-PRO. After 3 day detachment,
the ONL appears to be much more
loosely packed with nuclei than the
control attached tissue.
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sure of cell loss. We therefore used these data to compare with
results obtained using the newly developed automated nucleus
detector.

Nucleus as a blob:  Filtering is a very general technique
of transforming image gray levels in some way so as to en-
hance certain features. It has received more attention than any
other area of image processing and there are detailed refer-
ence works available [14,15]. Template matching is a simple
filtering method for detecting a particular feature in an image.
If the appearance of this feature in the image is known accu-
rately, one can try to detect it using template matching. The
template used in this matching is a subimage that looks just
like the image of the object. A similarity measure is computed
which reflects how well the image data match the template
for each possible location.

Figure 1 shows a confocal image of normal feline retina
illustrating the nuclear layers of the retina. In the image, nu-
clei can be approximated as simple, nearly circular shapes,
which we refer to as blobs. Therefore, our study focuses on
developing an efficient detection solution for nuclei, a class
of blob-like structures as roughly convex local intensity dis-
tributions whose iso-level contour is approximately ellipsoi-
dal with some irregularities that do not destroy the ellipsoidal
topology. First, we need to model a blob to use as our tem-
plate for detecting the nuclei in an image.

A single plane image will always show a slice of the indi-
vidual nuclei. The boundary of each nucleus shows up as strong
intensity discontinuities in an image and the intensity distri-
bution of some nuclei are multi-modal because of inconsis-
tent staining and biological characteristics such as the DNA
distribution (Figure 2A,B). However, the intensity distribu-
tion can be assumed to be uni-modal under the appropriate
amount of Gaussian blurring. After Gaussian blurring, the pro-
file of a nucleus becomes a ridge with smooth change of gray
level. Therefore, a blob can be modeled as a 3-D surface gen-
erated by rotating a ridge profile around its central axis (Fig-
ure 2C). If we model the nuclei as this blob with some addi-
tive Gaussian noise, we can design an optimum linear blob
detector by rotating the second derivative of a Gaussian around
its central axis. This 2-D filter is called Laplacian of Gaussian
(LoG) [16]. The general idea of the LoG is to detect edges and
lines in images by determining the peak point of the ridge as
accurately as possible given the ridge profile is corrupted by
certain amount of Gaussian noise. LoG has been utilized in
the image processing community for detecting edges [14,15].
In our work, we utilize the inverted Laplacian of Gaussian
(LoG) as our blob detector. We model the nuclei as circular
objects although these objects mostly resemble ellipsoids. Our
objective in using a circular model, a very general shape model,
is to achieve a rotation invariance in our detection. Otherwise
it is possible that we are overfitting our design to the training
images.

Nuclei detector design:  Once we have a blob detector,
the blob centers are detected with the following two steps: 1.
Blob detector design. The LoG filter is designed such that the
diameter of the filter is proportional to the average diameter
of nuclei in the image. For example, the average size of pho-
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Figure 2. Nucleus as a blob.  A: Example image of the outer nuclear
layer within a feline retina stained by TO-PRO. TO-PRO stains double
stranded nucleic acid in nuclei, which appears much brighter in cer-
tain parts of the cell. Such intensity variation is associated with the
DNA distribution within these cells. B: 3-D surface plot of Panel A:
the height of each point on the 3-D surface corresponds to the inten-
sity of each pixel in the image. Each nucleus is represented by mul-
tiple peaks caused by variation of DNA distribution within a cell,
however, it can be modeled as a uni-modal intensity distribution
shown in Panel C. The model is used as a template to detect nuclei in
an image.
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toreceptor nuclei in the feline retina is 4-6 µm so the diameter
of the filter can be set as 5 µm. The filter size in µm can be
easily converted to pixel size by using the metadata embed-
ded in a given image. The given retinal image is then filtered
by the LoG. This operation results in a smooth continuous
image of which the local maxima correspond to blob centers.

Search for local maxima. We search the filtered output
for local maxima. The minimum distance between blob cen-
ters is used as the search radius for the local maxima, and this
parameter is defined to be proportional to the filter size. In
summary, the nucleus detector requires two inputs: (1) the cell
size in µm or equivalent in pixels, and (2) the minimum dis-
tance between cells. The nuclear size to detect in biological
tissues is usually well known. A schematic diagram for a
nucleus detector is shown in Figure 3.

Evaluation of the nuclei detector:  The goal of the nucleus
detector is to generate counts of nuclei within the tissue layer
of interest that are close to that obtained by manual counting.
The manual count value, which is known as ground truth, is
compared with the results of the automatic nucleus detector
using various combinations of parameters. To estimate opti-
mal parameters of the nucleus detector, we evaluate its per-
formance using error criterion as

where N is the number of images in the training set, ND and
GT is the number of nuclei detected by our nucleus detector
and by manual counting, respectively.

Because manual counting is time-consuming, we obtained
ground truth for only 41 retinal images and, due to our small
data set, we employ the leave-one-out cross-validation method
to evaluate the detector’s performance. That is, we train the
nucleus detector 41 times, each time leaving out one image
from the training data set, and using only the omitted image to
compute the error. The resulting estimates of generalized er-
ror are used for choosing the optimal parameters for the nucleus
detector.

The performance of the proposed nucleus detector de-
pends on two factors. First, how well the filter approximates
the shape of a nucleus is determined by filter size and stan-
dard deviation µ. Second, how well the local maxima are de-
termined which is dependent on the minimum distance be-
tween blob centers. Since we search the filter output for local
maxima, µ does not affect the performance of the nucleus de-
tector. Thus, we vary two parameters: cell size (cs) in µm and
the proportion (p) of the minimum distance between blob cen-
ters and filter size (fs), where fs is defined as

where round[x] is the integer closest to x. The parameter cs is
varied by five different values from 4 to 8. The range of the
values is determined by the cell size within the ONL. The
parameter p varies by ten different values from 0.1 to 1. Thus,
we have a total 5-10 combinations, and 41 runs are conducted
for each combination. We find the nucleus detector achieved
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Figure 3. Nuclei detector design.  A: Schematic diagram of the nuclei detector: the blob centers are detected by filtering with the blob detector
followed by searching local maxima. B: Higher magnification of the outer nuclear layer within the result image in Panel A.
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a maximum performance (i.e., a minimum error) at cs=5 µm,
p=0.5. In practice additional training is not needed, and users
simply can apply the optimal parameters to any type of retinal
images given that image resolution is known. The summary
of test result is shown in Figure 4.

RESULTS
 In general, a good nucleus detector should satisfy the follow-
ing three criteria: (1) accurate so that it can approximate manual
counting; (2) simple and computationally efficient; providing
reliable results; and (3) applicable to a wide variety of image
types with minimal user interaction including parameter set-
tings or preprocessing of the given image. To show that our
nucleus detector satisfies these three criteria, we apply it to
various sets of retinal images (e.g., confocal images of cat
retina and transmitted light microscope images of mouse retina)
as well as other images commonly generated by all biologists
(e.g., DNA dot blots and fluorescent cell images).

Accuracy:  Application to confocal images of the retina.
We presented the results of applying the nuclei detector to a
series of confocal images of control and detached retinas. Here
we focus on detecting nuclei within the outer nuclear layer
(ONL) and the inner nuclear layer (INL). 41 digital images of
normal and 3-day detached feline retinas (21 control images
and 20 3-day detached retinal images) are generated with an
Olympus FluoView laser scanning confocal microscope from
tissue sections stained with TO-PRO. We use a single optical
section image 0.5 µm thick from each z-series so that we can
avoid counting superimposed nuclei in multiple planes. For
each image, we manually create a mask to define the bound-

ary of the ONL and the INL (Figure 5). The same data set is
used for manual counting to create ground truth. Each image
is manually counted three times independently to measure in-
tra-observer variation. For the ONL, the average variation over
41 images is 1.8% ranging from 0.2 to 5.35%. On the other
hand, the average variation for the INL is higher than that of
the ONL as 3.1% ranging from 0.78 to 8.41%. Since the INL
consists of three different types of cells that are packed closely
together, the boundaries of optically sliced cell bodies within
the INL are poorly defined. Those ill defined boundaries re-
sults in large variation in manual counting.

We found optimal parameters of the nucleus detector for
the ONL (cs=5 µm, p=0.5) through the leave-one-out cross
validation. Since we defined the filter size as

the filter size can be computed automatically by using image
resolution information extracted from the image. For example,
when the image resolution is 0.324 µm per pixel, the filter
size is computed as

that is, 15 pixels. In other words, the filter size is automati-
cally tuned to the cell size given a retinal image with the im-
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Figure 4. A summary of test results of 41 images.  Blue dots denote manual counting and the error bar of each blue dot indicates intra-observer
variation: standard deviation of three manual counting results of each image. Pink dots represent the result of the automated nuclei detector.
The nuclei detector does not systematically overestimate or underestimate the number of nuclei compared to the manual counts.
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age resolution. Then we apply the optimized nucleus detector
to the data set. To evaluate the performance of the nucleus
detector, the result is compared with the ground truth. The
automated nucleus detector approximates the number deter-
mined by manual counting. The average absolute error of the
nucleus detector is 3.67% ranging from 0 to 6.07% for the
ONL. Considering intra-observer variation is 1.8%, the re-
sults from our nucleus detector is promising. Even though we
do not have a ground truth of (x,y) coordinates of detected
nuclei, the locations of detected nuclei overlayed on the im-

age seem visually acceptable (Figure 6A,B). Note that the
contrast of the image shown in Figure 6B is not high enough
to assure visibility so that variation among the three manual
counting results of a given image become relatively high at
3.37%. For the INL, the average absolute error of the nucleus
detector is relatively high as 8.52% ranging from 0 to 13.76%
for the INL. Large variation in manual counting for the INL
results in a large error for the nucleus detector. Thus, we need
to develop more elaborate filters to handle tissue with nuclei
of multiple sizes and shapes to improve our detection result.

Applying cell counting to retinal detachment. Automated
nuclear counts are used to verify the finding that the number
of photoreceptors decrease in response to a retinal detachment.
In the feline model, retinal detachment leads to the death of
some photoreceptor cells [4,6]. Figure 7 shows the average
number of photoreceptor nuclei per mm2 of retina in control
eyes and those with 3-day detached retinas using the manual
counting method. The control retinas have, on average, 37503
nuclei/mm2. After 3 days of detachment, this number is re-
duced to an average of 33590 nuclei/mm2 (p=0.0001). Even
though the average number of photoreceptor nuclei is not ex-
actly the same as the manual count, the nucleus detector cap-
tures relative differences in cell density between normal and
3-day detached cases and reaches the same conclusion as
manual counting (Figure 7). For the INL, manual counts in 3-
day detached retinas would not be considered statistically dif-
ferent from those in normal retinas (p=0.05309; Figure 8).
Thus, both manual counting and the nucleus detector result in
the same conclusion; the number of cells within the INL does
not change in response to 3-day retinal detachment. This is
the first time that the number of cells in the INL have been
counted verifying an earlier qualitative prediction of cell death
in the inner retina in response to retinal detachment [6].

Application to large field of view images. We apply the
nucleus detector to a mosaic consisting of eight overlapping
images of 3 day detached cat retina. These images are acquired
with 5 to 20% overlap in order to align multiple images auto-
matically. The registration technique used is based on the au-
tomatic detection of feature points; the estimation of the trans-
formation is obtained using robust estimators on the putative
matches obtained matching the intensities of the point neigh-
borhoods [17]. This technique has been widely used to regis-
ter the remote sensed images. To ensure high quality results
containing the maximum amount of original unchanged data
blended without blur and abrupt intensity differences, a mod-
ern blending technique is used [18]. By using a mosaic, we
can count photoreceptor nuclei over a large area of the cat
retina without sampling within a tissue. There is a large amount
of work to estimate cell numbers from the average cell den-
sity of the region in which counting boxes are distributed
[1,19,20]. From this work, it has been determined that the larger
the tissue and steeper the gradients in cell density, the greater
the margin of error. The proposed nucleus detector overcomes
these potential errors because no assumptions are made about
size, shape or regional difference in cell density. Therefore, it
provides not only reliable results with greater confidence but
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Figure 5. Example image of a layer map, a schematic representation
of the retinal layers, created from a retinal image.  A: Confocal im-
age of a normal cat retina stained by TO-PRO. B: Layer map of Panel
A. Boundaries of layers are outlined manually.
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Figure 6. Application of the nuclei de-
tector to retinal images.  A: Confocal
image of a normal cat retina stained by
TO-PRO. Detected cell centers are
marked with yellow points. 688 cells are
detected with 0.5% error compared with
manual counts (690 cells). B: Applying
the nucleus detector to diagonally ori-
ented confocal image of a 3-day detached
cat retina stained by TO-PRO. The im-
age was acquired with poor contrast.
Detected cell centers are marked with yel-
low points. 606 cells are detected with
3.5% error compared with manual counts
(628 cells).
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also greater insight into relationships between cells and tis-
sues.

Applicability to varying sample preparation:  Applica-
tion to laser scanning confocal images stained with antibod-
ies. We applied our method to confocal images stained with
various antibodies that did not recognize nuclear antigens.
Thus, in the images used, the antibodies do not identify the
nuclei above background levels. Since confocal retinal im-
ages are generated by using fluorescence, only specific re-
gions where fluorescent dye molecules bind are visualized.
Therefore, the brightness range within the image is very small.
If the antibody does not bind to the ONL, then the ONL usu-
ally appears as a dark region where the intensity value of a
pixel is close to zero (Figure 9A). The histogram shown next
to the image is a plot of number of pixels at each of the 256
possible brightness levels. The narrow peak indicates that only
a few of the levels are represented. Since the brightness range
within the image is very small, there is not enough contrast to
visualize structures within the ONL. Therefore, the visibility
of the ONL structures should be improved by stretching con-
trast so that the values of pixels are reassigned to cover the
entire available range, thus making the nuclei visible. We ap-
ply a histogram equalization method [15] to the image so that
individual nuclei within the ONL can be discriminated (Fig-
ure 9B). This histogram plotted with the image in Figure 9B
now shows counts of pixels for gray levels that are spread out

across the available brightness scale. The results show that
the proposed method estimates the location of a cell body even
though the antibody used does not recognize and bind to
nuclear portions of the cell (Figure 9). In this context, cell
counting does not need to be limited to results obtained with
nuclear specific stains such as TO-PRO or DAPI. Furthermore,
our nucleus detector performs better than manual counting
especially where the contrast of the region is low (Figure 9E,F).
Since our approach estimates local maxima of the filter out-
put, the nucleus detector still can identify individual nuclei
even when the contrast of the region is low or the intensity
within the region varies dramatically.

Application to bright-field images of retina. We also ap-
ply the nucleus detector to images generated by transmitted
light microscopy of normal mouse retina (Figure 10). The fil-
ter size is set to 30 pixels and the minimum distance between
blob centers is set to 15 pixels (filter size >0.5), which is the
same optimal parameter calculated from feline retina. The re-
sult shows that the proposed method can approximate the center
of a cell quite well under these conditions even without fine
tuning of parameters.

Application to other images. We test the proposed method
with various images without tuning parameters. Figure 11A
shows an image of cultured cells and demonstrates that nuclei
can be detected with a single filter even though the size of
nuclei within the image are all different. Even though the blob
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Figure 7. A comparison of manual and
nucleus detector counts of photoreceptor
nuclei.  Using manual counts, the con-
trol retina had, on average, 37503 nuclei/
mm2. After 3 day of detachment, the cell
count is reduced to an average 33590
nuclei/mm2 (p=0.0001). Using nucleus
detector counts, the control retina had, on
average, 36164 nuclei/mm2. After 3 days
of detachment, the cell count is reduced
to an average 33417 nuclei/mm2

(p=0.0000007).

Figure 8. The average number of nuclei
within the inner nuclear layer.  Using
manual counts, the control retina had, on
average, 18659 nuclei/mm2. After 3 days
of detachment, the cell count is reduced
to an average 17516 nuclei/mm2

(p=0.05309). Using nucleus detector
counts, the graph is created from results
of the nucleus detector. The control retina
had, on average, 17501 nuclei/mm2. Af-
ter 3 days of detachment, the cell count
is reduced to an average 17435 nuclei/
mm2 (p=0.9755).

956



is bigger or smaller than the designed filter, the value of filter
output is still the local maximum at the center of the blob.
Therefore, searching local maxima of filter output enables
detecting various sizes of blobs. Similarly, Figure 11B con-
sists of various shapes and sizes of blobs downloaded from
Image J. Some of blobs are multi-lobed and each lobe can be

as big as other single-lobed blobs. By applying a single filter
with a median size blob within an image, we can detect all
blobs successfully. Since the proposed method assumes the
blob as a circular object, the filter output will have multiple
local maxima within the blob using the filter designed for
single-lobed blobs. Such multiple local maxima result in double
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Figure 9. Application to images
stained with various antibod-
ies.  A: Example of a single la-
beled image of synaptic termi-
nals (anti-synaptophysin). The
staining did not provide any
contrast to nuclei. B: Histo-
gram equalized image shows a
full range of black to white val-
ues. C,D: Histogram equalized
images of the retina labeled
with anti-vimentin. E,F: His-
togram equalized images of the
retina single labeled with anti-
neurofilament. A comparison
of images manually counted
and counted with the nucleus
detector are shown. C,E:
Manually counted images. The
nuclei were counted on the
printed paper by placing dots
over the nuclei. The paper was
scanned to create a digital im-
age. D,F: Nucleus detector.
White dots on the image rep-
resent detected nuclei.
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Figure 10. Light micrograph of nor-
mal mouse retina.  The tissue was
embedded in resin and stained with
Toluidine blue. The contrast be-
tween nuclei and the rest of tissue
is low compared to specific nuclear
dyes. Red dots on the image repre-
sent detected nuclei.

Figure 11. Application of the nuclei detector to different types of
images.  A: A fluorescent cell image acquired by an epi-fluorescent
microscope (downloaded from Image J): actin (red), α-tubulin (green)
and nuclei (blue). Six nuclei are detected. B: Blob image (down-
loaded from Image J). 61 blobs are detected with four detected twice
and three false positive blobs.

detected cells. However, they can be easily post-processed by
a simple morphological operation. Estimating local maxima
can result in detecting some false positive blobs, but they could
also be eliminated by tuning the parameters.

Practicality:  A number of manual counting methods have
been developed. While they are accurate, they are often diffi-
cult and tedious to use. The proposed nucleus detector is simple
and automated. However, a filter size and the minimum dis-
tance between cells must be defined. The default value of the
minimum distance can be set as half of the filter size as was
shown before and the filter size can be selected roughly from
a given sample image. In biological fields, information about
cell or nuclear size is usually well known. Therefore, the added
effort is not significant.

DISCUSSION
 In this paper, we described a nucleus detector that automati-
cally detects the number of nuclei in digital micrographs and
can thus be used for counting cells. Initially, we evaluated the
performance of the nucleus detector with confocal images of
feline retina but found it useful for a wide variety of prepara-
tions. For detecting photoreceptor nuclei, the nucleus detec-
tor performed very well with an average error of 3.67% rang-
ing from 0 to 6.07%. However, we found that the average er-
ror when used to count the INL was relatively high with an
average error of 8.55% (ranging from 0 to 13.76%). The INL
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consists of several different types of cells in which the size
and shape of nuclei vary. Therefore, we need to design a more
robust filter to detect multiple types of cells with different sized
and shaped nuclei. The advantages of the proposed method
are its simplicity and reliability to detect any blob-like struc-
tures such as nuclei. For example, when using this method to
detect nuclei in retinal tissues, no parameters need to be set.
Moreover, it is computationally efficient so it is applicable to
use across large expanses of tissue eliminating the need for
regional sampling which causes the potential errors. It is es-
pecially valuable for tissue with steep gradients in cell num-
ber (i.e., with distinct layers), such as brain and retina. Addi-
tionally, the proposed method can be used on a variety of
sample preparations or imaging methods, indicating its wide-
spread applicability.

We use histogram equalization to enhance the visibility
of features within an image. The histogram equalization
method increases the visual contrast for the pixels present,
but it does not increase the ability to discriminate subtle varia-
tions in gray scale that are not in the original image. It also
magnifies the brightness difference associated with noise in
the original image. Therefore, we need to develop a new con-
trast stretching method so that we can increase the contrast
while suppressing the brightness of noise.

Automated measurement from microscopy images is be-
coming an increasingly important tool in biology. The tech-
nique we suggest here, for the automated detecting of nuclei
is especially useful on a large scale. Moreover, we can extract
additional information based on the nuclei detection results,
including thickness of a layer and local cell density within a
region (e.g., a specific layer of the retina or brain) [21]. We
found that quantitative analysis based on nuclei detection not
only corroborated conclusions derived from manual measure-
ments and qualitative assessment, but also provided signifi-
cant information about local structural changes during retinal
detachment. This additional information will help us to deter-
mine if there is a correlation between the thickness of the ONL
and the density of photoreceptor cells, and whether it is pos-
sible to discriminate cones from rods by looking at the pattern
of DNA distribution within their nuclei.

The proposed nucleus detector has been implemented as
a plug-in for the public domain NIH image processing and
analysis program, Image J (version 1.34 developed at the US
National Institutes of Health and available). The nucleus de-
tector with sample images and instructions are available at
Bio-Image.
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