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ABSTRACT
Analyzing high-resolution images of astrocytes is important

in understanding the diseases, such as glaucoma and retinal

detachment, to which astrocytes are known to become re-

active. This is challenging because the cells are small, ho-

mogeneous, and closely packed. We propose an interactive

visualization system designed for such images. Our system

employs a probabilistic segmentation algorithm to help dis-

tinguish between cells. Design decisions on visualization and

interactions were made based on the needs of the scientists,

resulting in a visualization that shows the details of individual

cells in the context of a large image mosaic. Our interactive

system brings patterns of information to the surface, conveys

uncertainty, and serves as a tool for astrocyte research.

Index Terms— Astrocytes, Retina, Visualization

1. INTRODUCTION

Astrocytes are an important type of glial cell present in reti-

nas. In addition to being involved in retinal vascular growth

[1], astrocytes play an important role in diseases and injuries:

glaucomatous neurodegeneration [2] and retinal detachment

[3]. Studying astrocytes may elucidate their role in these

conditions, yet there is a lack of tools for visualizing astro-

cytes effectively. Although biomedical imaging techniques

have improved greatly since Stone and Dreher (1987) stud-

ied the distribution of astrocytes [4], work analyzing astro-

cyte images such as [1] still visualizes astrocyte network as

a whole without distinguishing between individual cells. As

data is gathered at higher resolution, the need for an interac-

tive visualization tool designed specifically for astrocytes is

paramount. Such a tool must integrate relevant image pro-

cessing techniques, visualize each piece of data in context of

the whole set, and be able to communicate uncertainty in the

data.

We present an interactive visualization system designed

for astrocyte images. Fig. 1 describes the pipeline where a

mouse retina is stained, imaged, segmented, and visualized.

Fig. 1(a) shows the astrocytes in green and blood vessels in

blue. The astrocytes in 1(b) are segmented using a probabilis-

tic method, resulting in images of individual cells as shown
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in 1(c). The segmented cells are put together in 1(d), an inset

of Fig. 2, showing cells in different colors. We implemented

different visualization and interaction techniques, described

in Section 4, to aid the exploration of the data. Section 5

describes how our software can show data in context, bring

various patterns to the surface, and can potentially help in an

investigation of detached retinas.

2. IMAGE COLLECTION

We are focusing on visualizing astrocytes of the whole retina.

In order to compile a dataset, a mouse’s retina tissue was fixed

and stained with anti-GFAP for astrocytes, anti-collagen IV

for blood vessels. As the astrocyte’s cytoskeleton contains

the protein GFAP, all astrocytes in the retina were visible.

The retina was then wholemounted and the astrocyte layer

imaged at 40X magnification on a laser scanning confocal mi-

croscope Olympus FluoView 1000. Sections of ∼ 316× ∼
316μm were imaged at 20% overlap in X-Y and in 20, 0.5

μm Z-steps, resulting in several hundred 3D images. The im-

ages were then stitched together into four large images using

[5]. The resulting images were then Z–projected into a 2D

image, as the astrocytes are very planar cells. Each image

is a quadrant of the retina, approximately ∼ 8500× ∼ 4000
pixels. This image resembles Fig. 2 but all astrocytes are in

green as in Fig. 1(a).

3. CELL SEGMENTATION

The centers of the astrocytes in the images were manually

marked, and each astrocyte was segmented out of the images

using a probabilistic segmentation method [6]. This is a step

in the pipeline from (b) to (c) in Fig. 1.

Probabilistic segmentation utilizes randoms walks with

restart to demarcate each cell in the image. A 1000 × 1000
pixel region Ri was extracted around each marked cell in

the image, and a random walk was performed for each cell.

The random walk method starts at the center of each cell

(pixel (500, 500) of Ri) and randomly moves to a neighbor-

ing pixel pj , weighted on the intensity of the fluorescence at

each pixel. After a move, the weights are recalculated using

the new neighboring pixels, and another random move is per-

formed. In addition, at each pj , there is a small probability
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Fig. 1. Data pipeline from segmentation to visualization.

of moving directly to the pixel at the center of Ri. This pro-

cess is repeated for thousands of iterations, and the number of

times each cell is visited is recorded. The recorded visits are

normalized with respect to the pixel at the center of Ri. The

final result is that every pixel pj ∈ Ri is assigned a probabil-

ity of being part of the cell that Ri was extracted around. In

Fig. 1(b), the six cells were extracted into probability maps

represented by grayscale images in (c). We executed the ran-

dom walk processes for the cells parallely on a cluster; on

overage, this takes two minutes per cell.

The regions around each cell may overlap, hence there

may be multiple values assigned to a pixel pj via several ran-

dom walks starting from different cells. We then normalize

these values to sum to one in order to create a probability dis-

tribution for each pj . That is, we assigned each pixel in the

entire image a probability of assignment to each cell in the

entire retina. For example, let us assume the random walk

from cell A assigned a probability of 0.25 to pixel pj , and the

random walk from cell B also assigned a probability of 0.10
to pj . Then normalizing these values, we determine that pj is

part of cell A with a ∼ 0.71 probability, part of cell B with

a ∼ 0.29 probability, and zero for all other cells. Very small

values below a threshold t are set to zero to avoid the scenario

where a pixel with a very small probability of being assigned

to only one cell is normalized, resulting in a probability of

one. The next section describes how the images in Fig. 1(c)

are combined to produce 1(d), an inset of Fig. 2.

4. INTERACTIVE VISUALIZATION

The visualization’s primary goal is an in-context presentation

of data so underlying patterns can emerge. This includes pat-

terns of cell shapes, wrapping patterns around blood vessels,

and patterns of cell density. These patterns are brought to

the surface in Fig. 2, enhanced by interaction techniques that

allow for a detailed view such as in Fig. 4(a). Since the seg-

mentation algorithm we use is probabilistic, it is important to

convey the amount of uncertainty as in Fig. 3. In Section

4.1, we describe how we put segmentation results together to

create Fig. 2, which is not just an image but an interactive

panel as explained in Section 4.2. In Section 4.3, we define

uncertainty in our data and visualize it.

4.1. Visualization techniques

To show the cell shapes and density patterns in context, we put

the segmentation results from Section 3 together in a single

big image. The image in Fig. 2 is rendered in accordance with

design decisions made in iterative prototyping between com-

puter scientists and biologists. Referring to the data pipeline

in Fig. 1, we describe how we construct 1(d) from 1(c).

The combined image (Fig. 1(d)) has the same dimension

as the original image (Fig. 1(b)). Each pixel, instead of con-

taining a single color denotation, contains a linked list to pairs

of (id, p) where p is the probability of cellid occupying that

pixel.

In rendering the final image as in Fig. 1(d) (inset of 2), the

colors (hues) of different cells are initially randomly assigned.

Since each pixel can be assigned to different cells, the color of

the pixel is chosen to be the hue value of the cell whose prob-

ability is the greatest (called the winning cell). The brightness

of the color is then proportional to such score. These design

decisions conform with the principle that hue is suitable for

distinguishing category while brightness is suitable for repre-

senting continuous quantity.

To avoid neighboring cells having similar colors, we ex-

perimented with different methods of assigning hues to the

cells. A graph of cells are made based on their overlaps. A

hue value is picked randomly for each cell, and then checked

if it distinguishes the cell from its connected neighbors. We

iterate until scores stop improving. Note that Vertex Coloring

is NP-Complete and the overlap graph is non-planar, hence

the chromatic number is not known easily. The users can also

change the colors manually.

4.2. Interactions

A variety of simple interaction techniques help the user ex-

plore the data both in detail and in context. Layers of infor-

mation can be turned on by control panel switches, keyboard

shortcuts, or mouse gestures.

In the default mode, the user sees a simple view as in Fig.

2, but the user can also bring up the cell center locations as

shown in Fig. 1(d). As the user hovers the mouse over the im-

age, the active cell becomes highlighted. The pixel boundary

of the segmented cell is highlighted and its extent outlined by
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Fig. 2. Segmented astrocytes are assigned individual colors (hues). The centers of 535 cells are highlighted.

drawing its convex hull. The cell area is calculated by count-

ing the number of pixels belonging to the cell, then converted

to square microns and shown in a box. In Fig. 4(a), the user

is viewing the detail of cell 40 (also the cell in the upper-right

corner of the inset in Fig. 2), as well as performing a distance

measurement of the diameter.

A selection of multiple cells can be toggled by double

clicking at the cell centers. The user can also compare how the

cell boundary is related to a Voronoi diagram of the cell cen-

ters in Fig. 4(b). When the feature is turned on, as the mouse

hovers, the centers of the cells to which this pixel belong are

highlighted with lines linked to the cells and the probability

from the segmentation algorithm annotated.

4.3. Uncertainty Visualization

The uncertainty of our data comes from the fact that we as-

sign colors to pixels based on the result of a probabilistic seg-

mentation method. Cells overlap more heavily in some areas

than others; therefore, the confidence in our decision to as-

sign colors to a region varies across the image. For the sake

of validity of any scientific scientific conclusions drawn from

the image, it is important that the amount of uncertainty be

communicated to the user. We utilize the concept of entropy

to quantify uncertainty. For each pixel, the entropy is defined

as the random walk score of the winning cell divided by the

sum of the random walk scores of all cells with respect to this

pixel. The entropy is high when it is clear which cell occupies

the pixel. To visualize, the image is divided into k × k-pixel

grids (k adjustable by the user), each cell displaying a glyph

(a solid disc) whose size is inversely proportional to the aver-

age entropy. Fig. 3 overlays the image with glyphs of varying

sizes. Wherever a glyph is big, the uncertainty is high – there

are contentions between nearby cells so the cell color assign-

ments should not be trusted completely.

(a) with diameter = 10px (b) with diameter = 30px

Fig. 3. Large glyphs appear where segmentation is uncertain.

5. RESULTS AND FEEDBACK

The authors who work in the field of biological research col-

laborate closely with the authors in computer science. The

visualization system has been informally evaluated through-

out by iterative prototyping. In this section, we describe how

the system has been used and how it may aid in the analysis

of new data.

Compared with traditional visualization methods for as-

trocytes, we find that our image of the individually segmented

cells communicates effectively in the following overall areas:

a) information about the individual cells such as shape and

size; and b) the relationship between cells such as connectiv-

ity patterns and density variations.

Traditionally, individual images from the microscope are

viewed independently, losing the context. An alternative

method is to view a mosaic of those pictures, revealing the

network of astrocytes but losing the details of individual cells.
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(a) detail of cell 40 (b) Voronoi diagram

Fig. 4. Other visualization features

This problem is particularly severe for astrocytes because the

cells are small, homogeneous (most cells look similar), and

closely packed.

With our visualization system where cells are individually

colored, we are able to see the shapes of individual cells while

maintaining the global information such as the connectivity

patterns and cell density. Generally, we are able to take ad-

vantage of the human ability to detect patterns both on global

and local scale. For example, astrocytes along a blood vessel

appear to have a certain shape, indicating a certain wrapping

pattern running East-West about 1
3 from the bottom (See Fig.

2). On a global scale, the astrocytes tend to cluster around

branches of the blood vessels, introducing areas of low den-

sity such as the dark area near the top right corner of Fig. 2.

By such visualization of multiple healthy retinas, the

human observer can learn standard patterns of astrocyte

shape, size, connectivity, density, and how the processes

wrap around the blood vessels. This can potentially allow for

a detection of changes in patterns across time of development

and/or across animals with different conditions (e.g. aging,

injury, disease, etc). A key question is whether an injury

to the retina would cause homogeneous responses from all

astrocytes. To answer this, not only do we need the images

of normal vs. injured retinas, but also a tool that brings the

patterns of changes to the surface of human perception.

Finally, there is a need in the research community for

a communication medium among scientists. Our visualiza-

tion system, by nature of its image occupying a large area

of the retina, serves as a reference frame when hypotheses

are formed or findings are described. While some interac-

tive tools such as distance and area measurements can help

communicate quantitative observations, other tools that show

global patterns such as a Voronoi diagram (Fig. 4(b)) and the

entropy glyphs can also help with qualitative discoveries.

6. CONCLUSION

Having collected an extensive set of images of mouse reti-

nas, we developed an interactive visualization system that al-

lows the researcher to examine the data more effectively. By

adapting state-of-the-art image processing techniques and in-

tegrating them with case-specific visualization and interaction

techniques in a novel way, we are able to show the details of

individual astrocytes – their shapes, areas, convex hull bound-

aries, and the uncertainty in segmentation – in the context of

a larger area. We allow the patterns in the data to emerge

so the scientists can draw observations regarding shape, size,

connectivity, and density around blood vessels, as well as to

detect such changes across time and conditions.

Our future work will incorporate a more streamlined data

pipeline from raw data to visualization, an interface that more

readily supports a larger data set of a whole retina at full res-

olution, interactive glyphs that show a summarization of data

at a global scale while allowing the user to riffle through in-

dividual pieces of data, and a better interface for searching,

sorting, and selecting cells. Cell center identification can be

automated for our new genetically modified mice, whose nu-

clei react to a different stain. We will also improve the color-

ing of cells to minimize color collisions.
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