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Abstract

This paper presents a deep-learning-based workflow to detect synapses and predict their neurotransmitter type in the
primitive chordate Ciona intestinalis (Ciona) electron microscopic (EM) images. Identifying synapses from EM
images to build a full map of connections between neurons is a labor-intensive process and requires significant
domain expertise. Automation of synapse classification would hasten the generation and analysis of connectomes.
Furthermore, inferences concerning neuron type and function from synapse features are in many cases difficult to
make. Finding the connection between synapse structure and function is an important step in fully understanding a
connectome. Class Activation Maps derived from the convolutional neural network provide insights on important
features of synapses based on cell type and function. The main contribution of this work is in the differentiation of
synapses by neurotransmitter type through the structural information in their EM images. This enables the prediction
of neurotransmitter types for neurons in Ciona, which were previously unknown. The prediction model with code is
available on GitHub.

Impact Statement
The working of a brain is an emergent property of the attributes and connectivity of its constitutive parts—the
neurons. The field of connectomics seeks to describe these features on a nervous systemwide scale, because only
then can the researcher conceptualize, model, and manipulate complete neural circuits driving behavior.
Experimentally describing the enormous number of synaptic connections within a nervous system in detail is
a daunting task, and is limited by the current technology to animals with small nervous systems. One such animal
is the primitive Chordate Ciona. The Ciona connectome, which was derived by serial-section electron micros-
copy (EM), describes the 177 neurons, and 6,618 synapses, that make up the central nervous system of a Ciona
larva.While the resulting EM-derived connectivitymatrix isely essential starting point for circuit analysis, it does
not readily reveal essential properties of the neurons, such as excitatory, inhibitory, or modulatory synaptic
connections. The goal of the current work is to determine if neurotransmitter types can be distinguished through
structural information in synaptic EM images. This enables the prediction of neurotransmitter types for neurons
in Ciona, which were previously unknown, and paves a way for streamlined annotation of EM images of
synapses.
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1. Introduction

We propose a deep-learning, convolutional neural network to detect Ciona intestinalis (Ciona) synapses
via image patch classification from serial-section-transmission electronmicroscopic (EM) images, as well
as a multimodal method of predicting neurotransmitter type based on several modalities of data obtained
in different ways—EM imaging, light microscopy of in situ hybridization, and behavioral observation
experiments. Ciona is of interest to neuroscientists because of its close evolutionary relationship to
vertebrates and small nervous system. Moreover, it is one of the very few animals for which a complete
synaptic connectome is available(1). An essential aspect of constructing a connectome, a comprehensive
map of neurons and their connections in the brain, is to identify the synapses that form chemical and
electrical communication links between neurons(2). Traditionally, the classification of synapses is
completed manually through expert analysis of thousands of images. This is a time-consuming process
that can take thousands of hours for one specimen. For example, the first Ciona connectome was
constructed manually over a period of 5 years from serial-section EM images(1). Another crucial but
missing component of understanding the connectome is the classification of the function and properties of
each synapse. One of the most important properties is neurotransmitter use. While some experimental
methods, such as in situ hybridization, can identify cells, or clusters of cells, expressing transcripts
indicating neurotransmitter use(3), the resolving power of light microscopy cannot reveal the connectivity
of these neurons. Additionally, in cases with intermingled neurotransmitter types and high variability in
neuron location across specimens, it may not be possible to find correspondence between neuron
properties derived by in situ hybridization and neurons identified by serial EM in the course of
constructing the connectome. Visual inspection of the synapses in Ciona EM images does not reveal
any distinguishable differences between known excitatory and inhibitory neurons. Some examples are
included in Figure 1. Like all chemical synapses, those in Ciona include the vesicle cluster in the
presynaptic neuron, which varies in count and size, and the postsynaptic density, which also varies in size
and density. No apparent pattern in these features is visible upon manual inspection.

In this paper,We define “Synapse Classification” to mean the classification of whether an image patch
contains a synapse or not. We define “Neurotransmitter-Type Prediction” to mean the prediction of
neurotransmitter type in an image patch already assumed to contain a synapse.We usemanually annotated

Figure 1.Examples of (a) inhibitory and (b) excitatory synapses. The synaptic region is circled in green. It
can be seen that there are varying vesicle counts and sizes, as well as little visible postsynaptic density.
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EM images of a Ciona larva to validate our findings. We also propose a deep-learning method to predict
the neurotransmitter type of a neuron based on the appearance of its synapses in EM images, and generate
Class Activation Maps(4) from the prediction model to visualize the features that are important in synapse
neurotransmitter-type prediction.

1.1. Contributions

Our main contributions are as follows.

1. An automated method to detect and localize synapses from EM data with high accuracy.
2. A method to predict the neurotransmitter class of neurons in Ciona based on its synapse structure.

Creation and analysis of class activation maps based on grad-CAM(4) from the neural network to
derive the synaptic features that are identified as important to neurotransmitter-type prediction.

3. Model-based predictions of neurotransmitter class by cell, which are previously unknown, and can
be used in further experiments to help determine the true neurotransmitter expression of said cells.

The methods and data are available upon request.

2. Prior Work

Previous work have reported successful application of computer vision methods for automatically
detecting synapses in EM images of Drosophila, mouse, and rabbit neurons(5–9). However, the synapses
of these organisms contain unique features, which the systems rely on heavily. The algorithm for
Drosophila synapse detection(5,8,9) involves the distinctive t-shaped feature and postsynaptic density to
detect the synapse, often with a 3D U-Net-inspired network(10), while the algorithms for mouse synapse
detection(6,7) were created for cryogenic EM. One approach applies pixel-level classification and graph
cut segmentation on EM images to identify potential synapses, then filters the potential synapses with a
random forest classifier(6). The classifiers are trained on manually annotated samples. A second approach
finds handcrafted synaptic cleft features for the presynaptic and postsynaptic region, and uses LogitBoost
to perform the final synapse detection(7). A third publication describes the uses of a fusion of ribbon, cleft,
and vesicle features of a rabbit retina synapse to detect retinal synapses through kernel learning(11).
Ribbons are not ubiquitous among synapses, and clefts are not always visible for different types of
synapses, so this method would not work on all types of synapses.

Studies have qualitatively shown differences between excitatory and inhibitory synapses—namely
that the vesicle shape and postsynaptic density appearance varied between the two functions(12–14).
However, these papers are mostly qualitative and do not provide predictive functionality. Furthermore,
these studies do not analyze a large number of synapses, and are not directly translatable to Ciona
synapses due to differences between species. More recently, synapse neurotransmitter-type prediction
using a deep network was done on EM images of Drosophila neurons(15). This body of work is most
similar to the one presented in this paper, but the appearance of Drosophila synapses differs drastically
from those of Ciona. Our previous study(3) combined in situ hybridization with the existing connectome
derived from EM to determine the neurotransmitter expression of neuron types, such as the photorecep-
tors. Point cloud matching was done to match relative cell locations in three dimensions between
fluorescent microscopic and EM results. While we are successful in determining the neurotransmitter
expression of individual cells belonging to the photoreceptors, we are unable to determine with certainty
the neurotransmitter expression of individual cells belonging to the relay neurons (RNs) and other types.
The present study aims to take steps toward resolving the neurotransmitter assignments in these
ambiguous regions while applying neural network approaches to this problem.

3. Data

The data consisted of EM images from a total of 3,375 60-nm serial sections from the anterior brain vesicle
to the motor ganglion of a Ciona larva. The sections were collected and imaged at 3.85-nm per pixel(1).
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The data collected surpassed 1 TB. The original Ciona EM serial-section image dataset was collected,
processed, and annotated using the programRECONSTRUCT(16). The annotations we focused on are the
synapse annotations (Figure 2), which are stored as points in three dimensions with a naming system to
indicate the pre- and postsynaptic neurons. In order to facilitate analysis, python scripts were written to
interface with the program and stored data and extract image patches corresponding to annotated regions.
A series of geometric transformwereas used to co-register the annotation coordinates with the aligned 3D
image stack coordinates. The RECONSTRUCT images used in this project are available upon request.
The image processing and extraction steps are described in Section 4.

3.1. Data curation and annotation

The EM images were scaled and aligned in the z-dimension while annotating the cellular components.
Image scaling is specified by a pixel size (magnification) parameter, while alignment is represented by a
nonlinear transformation associated with the image. Each transformationmaps trace points or image pixels
onto the section using a combination of basic functions representing an elementary motion such as
translation, orientation, scaling, and deformation. We extract the underlying annotations (actual
section coordinates in microns) from each section by combining these movement components in different
proportions. Each image is associated with an independent transformation which determines the size and
location of the element on the section. Applying the inverse transform on the contour point (x, y), we obtain
the points (x’, y’), on which applying the forward image transformation brings the points to the original
image domain. For our study, a synapse is represented by seven points forming an arrow, as shown in
Figure 3. After getting the coordinates of these points on the original image domain, we determine the

Figure 2. Example of manual annotations of synapses, indicated by the cyan arrows. The zoomed-in
image shows a patch containing a synapse, with the vesicles encircled with bright green and the cell
boundaries marked with dotted lines. The direction of the arrow does not indicate synaptic direction.

Figure 3. Illustration of data preparation method.
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centroid of these points and extract a 500� 500-dimensional patch around this centroid point. We perform
this operation for all the synapse annotations to obtain approximately 25,000 total patches. The code to
extract synapse points from EM data can be found at https://github.com/s-shailja/Ciona_EM.

The annotations we are working with indicate a general region with a 500 � 500 patch size within
which one or more synapses are present, but the exact synapse boundaries were not part of the annotation
in the dataset. Themethod for synapse localization would work for full-size images by taking overlapping
patches, with localization done on the level of the image patch size.

4. Methods

The major steps involved in Ciona synapse classification are shown in Figure 4. The synapse classifi-
cation workflow includes image patch extraction and training of a ResNeXT network. The neurotrans-
mitter prediction workflow is similar but sorts the images based on the assigned IDs(1) of the presynaptic
cell before training the deep learning network. Post-prediction class activation maps of the convolutional
neural network are computed for ba etter understanding of important imaging features for neurotrans-
mitter-type prediction. Feature maps are reduced to two-dimensional space and plotted to visualize the
feature-space distance between synapses of various neurotransmitter types.

For synapse classification, the same training process is used as follows. A ResNeXt-50 network
architecture(17) pretrained on the ImageNet(2) dataset was retrained on the extracted image patches. First,
the last fully connected layer was replaced with a randomly initialized fully connected layer with an input
of 2,048 and an output of 2. The output has two possible classes, with 0 being inhibitory and 1 being
excitatory. The training was done in two sessions. First, all layers of the ResNeXt are “frozen,” with no
gradient, except for the last fully connected layer. The model is trained for 100 epochs, and the best model
is used for the second round of training. On the second round of training, the entire network is “unfrozen,”
and every layer of the network is tuned with retraining for 200 epochs. The architecture of the deep
network is shown in Table 1.

Figure 4. EM image processing flowcharts.
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4.1. Synapse classification

Image patches containing annotated synapses and image patches containing nonsynaptic structures were
used for the training (80%) and testing (20%) sets. A total of 1,400 500� 500 image patches containing
synapses, and 1,392 500� 500 image patches containing nonsynaptic structures, were used for training a
synapse classification network. Nonsynaptic structures used were annotated variously as botrysomes,
coated vesicles, basal bodies, and autophagosomes. Annotated structures that were avoided due to the
possibility of synapses being in the same patch included terminals, vesicles, dense core vesicles, and gap
junctions. Misclassified patches are analyzed visually for confounding factors.

4.2. Synapse neurotransmitter prediction

Image patches were grouped by presynaptic and postsynaptic cell ID(1) before splitting into training,
validation, and testing sets. A similarity computation was applied to each patch to ensure that no
duplicates or extremely overlapping patches were used. Due to the limited number of synapses and
known neuron groups available, we combined the two inhibitory neurotransmitter types (glycine
and gamma-aminobutyric acid [GABA]) and the two excitatory neurotransmitter types (glutamate and
acetylcholine). A total of 470 excitatory synapses and 338 inhibitory synapses were used for training a
synapse classification network. A total of 1,246 excitatory synapses and 396 inhibitory synapses were
used for testing. Each synapse was composed of 3–10 image patches in the z-dimension.

Nine neuron groups with four known neurotransmitter types, as determined by in situ hybridization(3),
were used in training and testing. Each presynaptic neuron had 1–41 associated synapses. Neurotrans-
mitter class was predicted using the trained network on an additional 13 neuron groups with previously
unknown neurotransmitter types. For each presynaptic neuron, a majority vote was made from the
predictions of each synapse belonging to the neuron. Based on the strength of consensus, network
confidence, and prior knowledge from in situ hybridization experiments(3), predictions were made on the
neurotransmitter type of neurons that surpassed a confidence interval described as follows. For each
neuron, we tallied the number of predictions for each neurotransmitter valence. This tally is referred to as a
vote. The valence with the most votes is chosen as the raw prediction of that presynaptic neuron. If the
votes for each valence are close (e.g., inhibitory vote is not more than e1:02 times of the excitatory votes) or
that the total number of votes is less than 3, we determine the prediction to be inconclusive.

Table 1. ResNeXt-50 architecture.

Stage Layers Output

Conv1 7 � 7, 64 Stride 2 112 � 112
Conv2 (�3) 3 � 3 max pool Stride 2 56 � 56

1 � 1, 128 C = 32
3 � 3, 128
1 � 1, 256

Conv3 (�4) 1 � 1, 256 C = 32 28 � 28
3 � 3, 256
1 � 1, 512

Conv4 (�6) 1 � 1, 512 C = 32 14 � 14
3 � 3, 512
1 � 1, 1,024

Conv5 (�3) 1 � 1, 1,024 C = 32 7 � 7
3 � 3, 1,024
1 � 1, 2,048

Global average pool
1,000-d fc, softmax Prediction (0 or 1)
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4.3. Class activation maps

The patterns picked up by the deep-learning network might provide insights to the features visible in the
EM image that may connect synapse form to function.

A total of 512 � 512 image patches with labels are passed through the neurotransmitter prediction
neural network. The final layer of our network uses global average pooling to go from a size of
16 � 16 � 2,048 to 2,048 features, then compute probabilities for each of the N classes using a fully
connected layer without bias. For each pixel in the 16� 16 feature map, we then compute the amount that
this feature contributes to the output class. We apply the fully connected weights to the features at each
pixel, cutting out the average pooling step. The basic idea for deriving class activationmaps is described in
Reference (18). After extracting the activation maps from the model, we use connected component
analysis to find seed points, then employ awatershed algorithm to segment the activationmap into disjoint
regions to further analyze spatial and intensity information about the activations. Next, we removed
regions that were smaller than a set threshold, which was set empirically to 5,000 pixels. Following this
step, for each remaining connected region, we then calculated the x- and y-coordinates of the centroid for
the region and the average activation intensity inside the region of interest.

4.4. Feature maps

To see how the image features detected by the deep network relate to neurotransmitter type, we perform
t-distributed Stochastic Neighbor Embedding(19) after principal component analysis (PCA) to visualize
the features.

The t-SNE plot shows the feature projection of each individual synapse, not grouping the synapses by
cell. The high-dimensional features from the output layer of the prediction network were reduced to
20 dimensions using PCA. The 20-dimensional feature is then further reduced to two dimensions using
t-SNE, which better visualizes the clustering characteristics of the features. The features are grouped in
various ways to gain more insight into how they are clustered.

5. Results

For synapse classification, a training accuracy of 0.99 and a testing accuracy of 0.98 were achieved. For
training, 2,780 samples were used, with half of the samples containing synapses and half without
synapses. For testing, 692 samples were used, also with a 50/50 split of synapse versus nonsynapse
sample. There were no false negatives, but there were 13 false positives, which were detected by the
model. Examples of some false positives are shown in Figure 12.

Performance of the network on neurotransmitter-type prediction is shown in Table 2 and Table 3.
Precision is the number of true positives (TPs) divided by the sum of TPs and true negatives, and recall is
TPs divided by the total number of positive samples. Precision determines how often selected items are
relevant, and recall determines how often relevant items are selected.

Of the failed predictions (all false positives), 10 cases were image patches annotated as coated vesicles,
2 cases were annotated as botrysomes, and 1 case was annotated as an autophagosome. Some represen-
tative patches are included in Figure 12. From the failed cases, it can be seen that they tend to contain cell
boundaries and vesicles, which are features associated with synapses. The lack of false negatives is
reassuring, as the goal of the classification network is to detect likely synapses for screening by experts, so
false positives are better tolerated than false negatives.

To get a better idea of the features that are important to the neurotransmitter predictor network, we
visualized the activation maps of the network on different classes, as described in Section 4. The results of
the visualization show that cell boundaries, vesicles, and postsynaptic density are the main focus of the
majority of the attention for the trained network. Some examples of activationmaps are shown in Figure 5.

The feature maps derived from the model outputs are shown in Figures 6–8.
From the feature maps, it is evident that the synapses are placed in clusters that mostly correspond to

their neurotransmitter class, inhibitory, or excitatory. From Figure 8, it appears that the differences
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Table 2. Automated neurotransmitter prediction performance—per synapse (train and test) and
per cell.

Precision (per synapse) Recall (per synapse) Precision (per cell) Recall (per cell)

Inhibitory 0.98 train/0.98 test 0.93 train/0.91 test 1.0 0.95
Excitatory 0.96 train/0.93 test 0.99 train/0.99 test 0.98 1.0

Table 3. Automated synapse neurotransmitter-type performance breakdown by neurotransmitter type.
As seen in the table, the performance for glycine was the worst, most likely due to the low number of
cells and synapses available to train the model. Performance for GABA, acetylcholine, and glutamate
were similar to each other. Each cell contains multiple 500 � 500 pixel patches of synapses spread

throughout 3D space and may or may not be overlapping.

Number of cells Number of synapses Accuracy (per cell) Accuracy (per synapse)

Gly 3 22 0.67 0.71 train/0.6 test
GABA 19 457 1.0 0.92 train/0.95 test
Ach 19 292 1.0 0.97 train/1.0 test
Glut 23 342 1.0 1.0 train/0.98 test
Overall 64 1,113 0.98 0.95 train/0.97 test

Abbreviation: GABA, gamma-aminobutyric acid.

Figure 5. Processed class activation maps for excitatory and inhibitory synapse image patches. The
network seems to pay more attention to the vesicles when predicting inhibitory neurons, and the cell

boundary when predicting excitatory neurons. The blue arrows indicate cell boundaries, whereas the red
arrows indicate vesicles. The green outline shows the main region of interest of the network.
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Figure 6.Visualization of features for 30 neuron groups after reduction to two dimensions using principal
component analysis and t-distributed stochastic neighbor embedding. Each data point on the plot is the
computed feature of a synapse, with synapses that spanmultiple frames averaged across all frames. There
is quite a bit of intermingling of the features between cell groups, which is an encouraging sign that the

model is picking up on differences not unique to each cell type.

Figure 7. Feature visualization for synapses belonging to cells with known neurotransmitter type,
grouped by valence. Two distinct groups can be seen.
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between different excitatory neurotransmitters (acetylcholine and glutamate) are also captured by the
model, even though this information was not explicitly included during the training. From Figure 6, it can
be seen that the features of synapses tend to be spread out throughout the feature space, and co-mingle
among cell groups. This is promising, because this indicates that the model is picking up on differences
between synapses that are more indicative of neurotransmitter class, rather than group-specific differ-
ences.

Table 5 shows the performance of the model on synapses belonging to cells of known neurotransmitter
type. Some of these synapses were used for training, and others were used for testing. We tallied the
number of predictions by presynaptic neuron type and valence (inhibitory and excitatory) in the training
set. The tally is repeated for the testing set. The tally for each valence is referred to as a vote. The valence
with the most votes is chosen as the raw prediction of that presynaptic neuron. Those are the values in the
Predicted Valence section. We compared the valence of the raw prediction with the neurotransmitter type
determined by in situ hybridization to calculate precision and recall.

Table 4 shows the predictions of the model on RNs of unknown neurotransmitter type.We noticed that
the prediction model tends toward predicting more excitatory synapses in the RN group, since the
observed average number of excitatory RNs from in situ hybridization was 11, while the number of
predicted excitatory RNs was 14(3). All but one of the pr-AMG RNs was predicted to be excitatory, with
varying degrees of likelihood. This is different from our predictions in Reference (11), which indicated an
inclination toward inhibitory pr-AMG RNs, but with low confidence. However, the predicted number of
excitatory and inhibitory neurons in the RN group is closer to the observed number in Reference (3) than
the predicted results from 3D point cloud matching, which suggests a promising direction for resolving
the neurotransmitter types in that region. Further experiments and analysis are needed to determine with
certainty the neurotransmitter type of each RN.

Figure 8. Feature visualization for synapses with known neurotransmitter type, grouped by neuro-
transmitter. Even though the prediction model was trained only to differentiate between excitatory and
inhibitory synapses, it seems that the features tend toward separation by neurotransmitter type, with the

exception of glycine, again likely due to the lack of training samples.
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Table 4. Predicted neurotransmitter valence for the relay neurons (RNs). RNs used for training with known neurotransmitter type are omitted from this
table and included in the Appendix. The column with our model predictions is “Network prediction,” which is “inconclusive” if there are fewer than
three synapses for a given cell, or if the number of excitatory and inhibitory predictions are similar, that is, one is not more than 1.5 times the other.

Name Cell group Excitatory voxel Inhibitory voxel Excitatory score Inhibitory score Network prediction Overlay estimation

90 Bipolar prIN 6,234 532 1.10E-02 1.40E-03 Excitatory Excitatory
92 Bipolar prIN 6,767 259 1.20E-02 6.79E-04 Excitatory Excitatory
93 Non-sensory RN 308 905 5.44E-04 2.37E-03 Inconclusive Inconclusive
103 Non-sensory RN 5 867 8.84E-06 2.27E-03 Excitatory Inconclusive
106 Non-sensory RN 51 1,924 9.01E-05 5.05E-03 Inconclusive Inhibitory
122 Non-sensory RN 25 2,113 4.42E-05 5.54E-03 Excitatory Inhibitory
125 Non-sensory RN 83 12,696 1.47E-04 3.33E-02 Inhibitory Inhibitory
4 PNIN 0 0 0 0 Excitatory Inconclusive
6 PNIN 0 0 0 0 Excitatory Inconclusive
20 PNIN 0 0 0 0 Excitatory Inconclusive
29 PNIN 0 0 0 0 Excitatory Inconclusive
30 PNIN 0 0 0 0 Excitatory Inconclusive
85 PNIN 6,909 484 1.22E-02 1.27E-03 Excitatory Excitatory
61 PNIN 1,673 0 2.96E-03 0 Excitatory Excitatory
65 PNIN 8,273 146 1.46E-02 3.83E-04 Excitatory Excitatory
88 PNIN 13,979 236 2.47E-02 6.19E-04 Excitatory Excitatory
131 PNRN 1 6,828 1.77E-06 1.79E-02 Excitatory Inhibitory
74 pr-AMG RN 1,665 0 2.94E-03 0 Excitatory Excitatory
94 pr-AMG RN 8,900 9,602 1.57E-02 2.52E-02 Excitatory Inconclusive
108 pr-AMG RN 5,903 1,558 1.04E-02 4.09E-03 Excitatory Inconclusive
116 pr-AMG RN 7,398 423 1.31E-02 1.11E-03 Inconclusive Excitatory
124 pr-AMG RN 6,215 6,184 1.10E-02 1.62E-02 Excitatory Inconclusive
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Table 4. Continued

Name Cell group Excitatory voxel Inhibitory voxel Excitatory score Inhibitory score Network prediction Overlay estimation

127 pr-AMG RN 871 6,454 1.54E-03 1.69E-02 Excitatory Inhibitory
140 pr-AMG RN 1,485 7,463 2.62E-03 1.96E-02 Excitatory Inconclusive
157 pr-AMG RN 941 3,979 1.66E-03 1.04E-02 Inconclusive Inconclusive
123 pr-BTN RN 6,077 2,991 1.07E-02 7.84E-03 Inconclusive Inconclusive
130 pr-BTN RN 312 84 5.51E-04 2.20E-04 Inhibitory Inconclusive
105 pr-cor RN 2,953 760 5.22E-03 1.99E-03 Inconclusive Excitatory
112 pr-cor RN 197 6,530 3.48E-04 1.71E-02 Inconclusive Inhibitory
119 pr-cor RN 236 3,234 4.17E-04 8.48E-03 Inconclusive Inhibitory
80 prRN 2,301 1,352 4.07E-03 3.55E-03 Inconclusive Inconclusive
86 prRN 4,822 1,696 8.52E-03 4.45E-03 Inconclusive Inconclusive
96 prRN 3,660 4,863 6.47E-03 1.28E-02 Excitatory Inconclusive
100 prRN 174 11,273 3.08E-04 2.96E-02 Inconclusive Inhibitory
121 prRN 751 7,371 1.33E-03 1.93E-02 Inconclusive Inhibitory
126 prRN 1,096 4,588 1.94E-03 1.20E-02 Inconclusive Inhibitory
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The full prediction table is included in Table 5 in the Appendix. Summaries of the available data are
shown in Figures 9 and 10.

5.1. Comparison with manual overlay

The crux of our analysis lies in our hypothesis that the same cells appear in similar locations acrossCiona
specimens. To provide an additional point of comparison, we manually overlay the fluorescent imaging
results from in situ hybridization with the cell centroids provided by the annotated EM data, as seen in
Figure 11. Using the Unity software(20), the centroid and volume of each neuron in the four selected cell
groups as given in Reference (1) are rendered in 3D. Each neuron is approximated with a sphere of its
corresponding volume. As seen on the leftmost image in Figure 9, image stacks of in situ from Reference
(3) that contain expression of both vesicular GABA transporter (VGAT, inhibitory) and vesicular
acetylcholine transporter (VAChT, excitatory) in the posterior Brain Vesicle are also rendered into the

Figure 9. Number of unique cells per cell type of selected groups of interest.

Figure 10. Frequency of cells with various number of synapses. It can be seen that the majority of cells
have between 10 and 20 synapses.
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software with real-world dimensions. Since certain parts of the VGAT structure are well known and
consistent, such as in the photoreceptors and at the posterior end of the RNs, this was used to manually
align the in situ with the connectome. The matching criteria are as follows: the posterior border does not
extend beyond the most posterior antRN, the dorsal cap marks the Eminen cells, and the two patches, a
smaller posterior one and a larger anterior one, on the right mark the two photoreceptor groups, PR-I (only
pr9 and pr10) and PR-II, respectively. After this alignment is done, the smaller VAChT-labeled regions are
brought into view for analysis. Seven in situs from Reference (3) are aligned using the mentioned
structures and similarity across the in situs as guides. Once they are aligned, a collision detector is used to
compute the number of voxels in contact with each neuron. An illustration of the matching process is
shown in Figure 11, and the comparative results are shown in Table 4.

6. Discussion

The proposedmodel has good performance on the classification of synapses in EM forCiona.While there
are some false positives from the model prediction (Table 1), this is desirable compared with false
negatives, because an expert can then screen the predictions to determine true synapses. The ratio of
synapses to nonsynaptic structures in a typical EMofCiona is on the order of 1:1,000. Instead of scanning
an entire image for possible synapses, the model can drastically reduce the annotation time needed for
synapse annotation. The synapse prediction model has helped to identify possible neurotransmitter types
for cells from certain neuronal groups, which were previously unknown. While we cannot be absolutely
certain that the model has predicted correctly for synapses belonging to cells with previously unknown
neurotransmitter types, the output of themodel seems reasonable given the feature analysis we have done.
Comparison with previous in situ hybridization results have also shown that the prediction of the model is
likely correct. For the RNs, in Reference (3), we had previously found an average of 16 VGAT-positive
neurons and 11 VAChT-positive neurons. The prediction of the network matches these numbers well, and
much better than the point-cloud registration method used in Reference (3). We hope that the model
predictions will work in conjunction with both prior and future analyses to help resolve the neurotrans-
mitter type of individual neurons in regions that have been difficult to resolve using in situ hybridization
and other experimental methods.

More work can be done on the analysis of cellular and subcellular features in neurons with undeter-
mined neurotransmitter type. Overall connectivity and cell shape can be obtained from the annotated EM
data and may be useful tools in better understanding the relationship between structural features and
neurotransmitter-type expression. The connection between cell group and synapse structure can also be
further explored, and may help with a more robust neurotransmitter prediction method. Additionally,
detailed cell segmentation annotations could be created and added as another potential feature for
analysis.

Consent for Publication. All authors have provided consent for publication.

Figure 11. Illustration of manual overlay of in situ hybridization results for VGAT (left image) and EM-
derived cell centroids (middle image) in 3D. Of the four cell groups shown, the areas with VGAT are

encapsulated by the cell models, as seen in the rightmost image. See the text for more details.
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Appendix

Table 5 Ground truth predictions.

Cell ID In situ
LLR
test

LLR
train

Excitatory
test

Inhibitory
test

Excitatory
train

Inhibitory
train

Prediction
test

Prediction
train

ACIN1L Gly 0.24 �1.73 1 0 0 6 Excitatory Inhibitory
ACIN2L Gly �0.68 0.12 1 2 4 3 Inhibitory Excitatory
ACIN2R Gly �0.46 �0.54 0 1 1 3 Inhibitory Inhibitory
AMG1 GABA �1.08 �1.66 0 5 1 9 Inhibitory Inhibitory
AMG2 GABA �0.67 �3.09 1 4 1 14 Inhibitory Inhibitory
AMG3 GABA �0.21 �3.59 0 1 0 14 Inhibitory Inhibitory
AMG4 GABA �0.47 �2.42 0 2 2 12 Inhibitory Inhibitory
AMG5 Ach 2.49 2.87 8 0 14 2 Excitatory Excitatory
AMG6 GABA �0.49 �3.55 1 2 1 14 Inhibitory Inhibitory
AMG7 GABA �0.6 �3.1 0 3 1 16 Inhibitory Inhibitory
Ant1 Glut 0.21 3.89 3 1 14 0 Excitatory Excitatory
Ant2 Glut 2.46 7.25 9 0 25 1 Excitatory Excitatory
120 GABA �1.56 �11.75 0 4 1 29 Inhibitory Inhibitory
134 GABA �1.58 �6.74 0 5 1 20 Inhibitory Inhibitory
135 GABA �1.15 �5.12 0 3 1 19 Inhibitory Inhibitory
142 GABA �1.54 �7.14 0 5 2 23 Inhibitory Inhibitory
143 GABA �1.75 �6.55 0 5 3 20 Inhibitory Inhibitory
147 GABA �2.94 �7.12 0 7 0 20 Inhibitory Inhibitory
152 GABA �2.58 �5.79 0 8 3 21 Inhibitory Inhibitory
153 GABA �1.52 �3.36 0 5 1 10 Inhibitory Inhibitory
159 GABA �1.79 �5.6 0 5 2 16 Inhibitory Inhibitory
161 GABA �3.02 �5.22 0 6 1 16 Inhibitory Inhibitory
ddNL Ach 1.39 4.69 4 0 16 0 Excitatory Excitatory
ddNR Ach 1.37 3.79 4 0 12 0 Excitatory Excitatory
Em1 GABA �1.11 �7.92 1 6 3 31 Inhibitory Inhibitory
Em2 GABA �1.6 �6.26 1 6 3 24 Inhibitory Inhibitory
MGIN1L Ach 0.87 6.27 5 0 25 1 Excitatory Excitatory
MGIN1R Ach 0.43 6 3 0 22 0 Excitatory Excitatory
MGIN2L Ach 0.82 4.85 3 0 14 0 Excitatory Excitatory
MGIN2R Ach 2.01 3.88 6 0 14 1 Excitatory Excitatory
MGIN3L Ach 0.33 2.91 1 0 7 0 Excitatory Excitatory
MGIN3R Ach 0.68 2 2 0 7 1 Excitatory Excitatory
MN1L Ach 1.13 5.77 3 0 18 0 Excitatory Excitatory
MN1R Ach 2.9 3.85 8 0 16 1 Excitatory Excitatory
MN2L Ach 1.84 3.46 4 0 9 0 Excitatory Excitatory
MN2R Ach 1.56 4.81 4 0 11 0 Excitatory Excitatory
MN3L Ach 0.43 1.91 1 0 5 0 Excitatory Excitatory
MN3R Ach 0.85 2.77 3 0 7 0 Excitatory Excitatory
MN4L Ach 1.91 1.02 6 0 4 0 Excitatory Excitatory
MN4R Ach 0.76 2.92 2 0 7 0 Excitatory Excitatory
MN5L Ach 0.4 1.34 1 0 3 0 Excitatory Excitatory
MN5R Ach 0.37 2.54 1 0 6 0 Excitatory Excitatory
pr1 Glut 1.5 2.05 4 0 9 0 Excitatory Excitatory
pr11 Glut 0.67 2.41 3 0 10 0 Excitatory Excitatory
pr12 Glut 0.85 4.72 3 0 16 0 Excitatory Excitatory
pr13 Glut 1.1 2.96 3 0 11 0 Excitatory Excitatory
pr14 Glut 0.16 – 1 0 0 0 Excitatory Excitatory
pr15 Glut 1.98 7.33 7 0 27 0 Excitatory Excitatory
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Table 5. Continued

Cell ID In situ
LLR
test

LLR
train

Excitatory
test

Inhibitory
test

Excitatory
train

Inhibitory
train

Prediction
test

Prediction
train

pr16 Glut 0.89 1.83 3 0 7 0 Excitatory Excitatory
pr17 Glut 0.44 3.35 2 0 13 0 Excitatory Excitatory
pr18 Glut 0.14 0.58 1 0 2 0 Excitatory Excitatory
pr19 Glut 1.38 1.48 5 0 7 0 Excitatory Excitatory
pr2 Glut 0.39 1.3 2 0 6 0 Excitatory Excitatory
pr20 Glut 2.92 5.94 9 0 22 0 Excitatory Excitatory
pr21 Glut 0.43 2.18 2 0 9 0 Excitatory Excitatory
pr22 Glut 0.58 2.4 3 0 10 0 Excitatory Excitatory
pr23 Glut 1.06 4.16 4 0 14 0 Excitatory Excitatory
pr3 Glut 0.54 3.06 2 0 12 0 Excitatory Excitatory
pr4 Glut 0.66 – 3 1 0 0 Excitatory Excitatory
pr5 Glut 0.85 2.41 3 0 8 0 Excitatory Excitatory
pr6 Glut 0.75 2.14 2 0 9 0 Excitatory Excitatory
pr7 Glut 1.18 4.82 4 0 16 0 Excitatory Excitatory
pr8 Glut 0.66 2.7 3 0 11 0 Excitatory Excitatory
pr9 GABA �0.36 �1.3 0 1 4 11 Inhibitory Inhibitory
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Figure 12. Examples of false positives for the synapse classification network. (a)–(c) contain coated
vesicles, (d) and (e) contain botrysomes, and (f) contains an autophagosome. It can be seen that either cell

boundaries (blue arrows) or groups of vesicles (red arrows) are visible in many of the cases.
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