Title | Suppressing mosquito populations with precision guided sterile males |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Li M, Yang T, Bui M, Gamez S, Wise T, Kandul NP, Liu J, Alcantara L, Lee H, Edula JR, Raban R, Zhan Y, Wang Y, DeBeaubien N, Chen J, C HMSánchez, Bennett JB, Antoshechkin I, Montell C, Marshall JM, Akbari OS |
Journal | Nat Commun |
Volume | 12 |
Issue | 1 |
Pagination | 5374 |
Date Published | 2021 09 10 |
ISSN | 2041-1723 |
Keywords | Aedes, Animals, Animals, Genetically Modified, Arboviruses, Chikungunya Fever, Dengue, Female, Humans, Infertility, Male, Male, Models, Biological, Mosquito Control, Mosquito Vectors, Yellow Fever, Zika Virus, Zika Virus Infection |
Abstract | The mosquito Aedes aegypti is the principal vector for arboviruses including dengue/yellow fever, chikungunya, and Zika virus, infecting hundreds of millions of people annually. Unfortunately, traditional control methodologies are insufficient, so innovative control methods are needed. To complement existing measures, here we develop a molecular genetic control system termed precision-guided sterile insect technique (pgSIT) in Aedes aegypti. PgSIT uses a simple CRISPR-based approach to generate flightless females and sterile males that are deployable at any life stage. Supported by mathematical models, we empirically demonstrate that released pgSIT males can compete, suppress, and even eliminate mosquito populations. This platform technology could be used in the field, and adapted to many vectors, for controlling wild populations to curtail disease in a safe, confinable, and reversible manner. |
DOI | 10.1038/s41467-021-25421-w |
Alternate Journal | Nat Commun |
PubMed ID | 34508072 |
PubMed Central ID | PMC8433431 |
Grant List | R01 AI151004 / AI / NIAID NIH HHS / United States R56 AI153334 / AI / NIAID NIH HHS / United States |