Title | Adhesion mechanism in a DOPA-deficient foot protein from green mussels(). |
Publication Type | Journal Article |
Year of Publication | 2012 |
Authors | Hwang, DSoo, Zeng, H, Lu, Q, Israelachvili, JN, Waite, JH |
Journal | Soft Matter |
Volume | 8 |
Issue | 20 |
Pagination | 5640-5648 |
Date Published | 2012 |
ISSN | 1744-6848 |
Abstract | The holdfast or byssus of Asian green mussels, Perna viridis, contains a foot protein, pvfp-1, that differs in two respects from all other known adhesive mussel foot proteins (mfp): (1) instead of the hallmark L-3,4-dihydroxyphenylalanine (DOPA) residues in mfp-1, for example, pvfp-1 contains C(2)-mannosyl-7-hydroxytryptophan (Man7OHTrp). (2) In addition, pvfp-1 chains are not monomeric like mfp-1 but trimerized by collagen and coiled-coil domains near the carboxy terminus after a typical domain of tandemly repeated decapeptides. Here, the contribution of these peculiarities to adhesion was examined using a surface forces apparatus (SFA). Unlike previously studied mfp-1s, pvfp-1 showed significant adhesion to mica and, in symmetric pvfp-1 films, substantial cohesive interactions were present at pH 5.5. The role of Man7OHTrp in adhesion is not clear, and a DOPA-like role for Man7OHTrp in metal complexation (e.g., Cu(2+), Fe(3+)) was not observed. Instead, cation-π interactions with low desolvation penalty between Man7OHTrp and lysyl side chains and conformational changes (raveling and unraveling of collagen helix and coiled-coil domains) are the best explanations for the strong adhesion between pvfp-1 monomolecular films. The strong adhesion mechanism induced by cation-π interactions and conformational changes in pvfp-1 provides new insights for the development of biomimetic underwater adhesives. |
DOI | 10.1039/C2SM25173F |
Alternate Journal | Soft Matter |
PubMed ID | 23105946 |
PubMed Central ID | PMC3482130 |
Grant List | R01 DE018468 / DE / NIDCR NIH HHS / United States |