Hydrophobic enhancement of Dopa-mediated adhesion in a mussel foot protein.

TitleHydrophobic enhancement of Dopa-mediated adhesion in a mussel foot protein.
Publication TypeJournal Article
Year of Publication2013
AuthorsWei, W, Yu, J, Broomell, C, Israelachvili, JN, Waite, JH
JournalJ Am Chem Soc
Volume135
Issue1
Pagination377-83
Date Published2013 Jan 9
ISSN1520-5126
KeywordsAnimals, Dihydroxyphenylalanine, Hydrophobic and Hydrophilic Interactions, Mytilus, Proteins
Abstract

Dopa (3,4-dihydroxyphenylalanine) is recognized as a key chemical signature of mussel adhesion and has been adopted into diverse synthetic polymer systems. Dopa's notorious susceptibility to oxidation, however, poses significant challenges to the practical translation of mussel adhesion. Using a surface forces apparatus to investigate the adhesion of mussel foot protein 3 (Mfp3) "slow", a hydrophobic protein variant of the Mfp3 family in the plaque, we have discovered a subtle molecular strategy correlated with hydrophobicity that appears to compensate for Dopa instability. At pH 3, where Dopa is stable, Mfp3 slow, like Mfp3 "fast" adhesion to mica, is directly proportional to the mol % of Dopa present in the protein. At pH of 5.5 and 7.5, however, loss of adhesion in Mfp3 slow was less than half that occurring in Mfp3 fast, purportedly because Dopa in Mfp3 slow is less prone to oxidation. Indeed, cyclic voltammetry showed that the oxidation potential of Dopa in Mfp3 slow is significantly higher than in Mfp3 fast at pH of 7.5. A much greater difference between the two variants was revealed in the interaction energy of two symmetric Mfp3 slow films (E(ad) = -3 mJ/m(2)). This energy corresponds to the energy of protein cohesion which is notable for its reversibility and pH independence. Exploitation of aromatic hydrophobic sequences to protect Dopa against oxidation as well as to mediate hydrophobic and H-bonding interactions between proteins provides new insights for developing effective artificial underwater adhesives.

DOI10.1021/ja309590f
Alternate JournalJ. Am. Chem. Soc.
PubMed ID23214725
PubMed Central IDPMC3587158
Grant ListR01 DE018468 / DE / NIDCR NIH HHS / United States
R01-DE018468 / DE / NIDCR NIH HHS / United States