Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films.

TitleAdaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films.
Publication TypeJournal Article
Year of Publication2013
AuthorsYu, J, Kan, Y, Rapp, MV, Danner, EW, Wei, W, Das, S, Miller, DR, Chen, Y, Waite, JH, Israelachvili, JN
JournalProc Natl Acad Sci U S A
Date Published2013 Sep 24
KeywordsAdhesiveness, Amino Acid Sequence, Animals, Bivalvia, Hydrophobic and Hydrophilic Interactions, Models, Molecular, Molecular Sequence Data, Organic Chemicals, Proteins, Surface Properties, Thermodynamics

The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties therefore is of considerable theoretical and practical interest. Using self-assembled monolayers (SAMs) on atomically smooth gold substrates and the surface forces apparatus, we explored the force-distance profiles and adhesion energies of three different Mfps, Mfp-1, Mfp-3, and Mfp-5, on (i) hydrophobic methyl (CH3)- and (ii) hydrophilic alcohol (OH)-terminated SAM surfaces between pH 3 and pH 7.5. At acidic pH, all three Mfps adhered strongly to the CH3-terminated SAM surfaces via hydrophobic interactions (range of adhesive interaction energy = -4 to -9 mJ/m(2)) but only weakly to the OH-terminated SAM surfaces through H- bonding (adhesive interaction energy ≤ -0.5 mJ/m(2)). 3, 4-Dihydroxyphenylalanine (Dopa) residues in Mfps mediate binding to both SAM surface types but do so through different interactions: typical bidentate H-bonding by Dopa is frustrated by the longer spacing of OH-SAMs; in contrast, on CH3-SAMs, Dopa in synergy with other nonpolar residues partitions to the hydrophobic surface. Asymmetry in the distribution of hydrophobic residues in intrinsically unstructured proteins, the distortion of bond geometry between H-bonding surfaces, and the manipulation of physisorbed binding lifetimes represent important concepts for the design of adhesive and nonfouling surfaces.

Alternate JournalProc. Natl. Acad. Sci. U.S.A.
PubMed ID24014592
PubMed Central IDPMC3785749
Grant ListR01 DE018468 / DE / NIDCR NIH HHS / United States
R01-DE018468 / DE / NIDCR NIH HHS / United States