Simple peptide coacervates adapted for rapid pressure-sensitive wet adhesion.

TitleSimple peptide coacervates adapted for rapid pressure-sensitive wet adhesion.
Publication TypeJournal Article
Year of Publication2017
AuthorsKaminker, I, Wei, W, Schrader, AM, Talmon, Y, Valentine, MT, Israelachvili, JN, J Waite, H, Han, S
JournalSoft Matter
Volume13
Issue48
Pagination9122-9131
Date Published2017 Dec 13
ISSN1744-6848
Abstract

We report here that a dense liquid formed by spontaneous condensation, also known as simple coacervation, of a single mussel foot protein-3S-mimicking peptide exhibits properties critical for underwater adhesion. A structurally homogeneous coacervate is deposited on underwater surfaces as micrometer-thick layers, and, after compression, displays orders of magnitude higher underwater adhesion at 2 N m than that reported from thin films of the most adhesive mussel-foot-derived peptides or their synthetic mimics. The increase in adhesion efficiency does not require nor rely on post-deposition curing or chemical processing, but rather represents an intrinsic physical property of the single-component coacervate. Its wet adhesive and rheological properties correlate with significant dehydration, tight peptide packing and restriction in peptide mobility. We suggest that such dense coacervate liquids represent an essential adaptation for the initial priming stages of mussel adhesive deposition, and provide a hitherto untapped design principle for synthetic underwater adhesives.

DOI10.1039/c7sm01915g
Alternate JournalSoft Matter
PubMed ID29192930
PubMed Central IDPMC5744669
Grant ListR01 DE018468 / DE / NIDCR NIH HHS / United States
S10 OD010610 / OD / NIH HHS / United States